🎤 爲偶像應援 · Gate送你直達 Token of Love! 🎶
家人們,現在在Gate廣場爲 打 Token of Love CALL,20 張音樂節門票等你來瓜分!🔥
泫雅 / SUECO / DJ KAKA / CLICK#15 —— 你最期待誰?快來一起應援吧!
📌 參與方式(任選,參與越多中獎幾率越高!)
1️⃣ 本帖互動
點讚 & 轉發本帖 + 投票你最愛的藝人
評論區打出 “我在 Gate 廣場爲 Token of Love 打 Call !”
2️⃣ 廣場發帖爲 TA 打 Call
帶上 #歌手名字# + #TokenOfLove#
發帖內容任選:
🎵 最想現場聽到的歌 + 心情宣言
📣 應援口號(例:泫雅女王衝鴨!Gate廣場全員打 Call!)
😎 自制表情包/海報/短視頻(加分項,更容易中獎!)
3️⃣ 推特 / 小紅書發帖打 Call
同樣帶上 #歌手名字# + #TokenOfLove#
內容同上,記得回鏈到表單 👉️ https://www.gate.com/questionnaire/7008
🎟️ 獎勵安排
廣場優質發帖用戶:8張門票
廣場幸運互動用戶:2張門票
Twitter 優質發帖用戶:5張門票
小紅書優質發帖用戶:5張門票
📌 優質帖文將根據文章豐富度、熱度、創意度綜合評分,禁止小號水貼,原創發帖更易獲獎!
🕒 8
📌 @Mira_Network到底有什麼不同之處?
我認爲對於大多數人工智能項目來說,最終目標總是一樣的:解決訓練困境。
基本上:如果你訓練一個模型使其更準確,它往往會變得更加偏見。
但是如果你嘗試通過使用更廣泛、更具多樣性的數據來修正偏見……你通常會得到更多的幻覺。
然而,@Mira_Network 採取了不同的路線。
與其執着於一個完美的模型,他們會使用多個模型相互驗證。
並且它有效-錯誤率從~30%降至~5%在真實任務上。
他們甚至目標是低於0.1%,這太瘋狂了。
你已經可以看到它的現場了:
✨ 如果你正在使用Gigabrain,你是在以92%的勝率進行Mira認證信號的交易
✨ Learnrite 構建的考試問題具有超過 90% 的事實可靠性
✨ Klok 每次都爲您提供由 4 個以上模型驗證的響應
那些應用都不需要從頭開始重新訓練模型。這正是$Mira所能實現的。